已知直线的参数方程为,曲线的极坐标方程为.(1)将直线的参数方程化为普通方程;以极点为直角坐标系的原点,极轴为轴正半轴,建立直角坐标系,且在两种坐标系中取相同的长度单位,将曲线的极坐标方程化为直角坐标方程;(2)若为直线上任一点,是曲线上任一点,求的最小值.
如图,四棱锥P—ABCD的底面为菱形且,PA⊥底面ABCD,AB=2,PA=,E为PC的中点. (1)求直线DE与平面PAC所成角的大小; (2)求二面角E—AD—C的余弦值.
如图,直三棱柱(侧棱垂直于底面)中,,点是棱的中点,且. (1)求证:; (2)求直线与平面所成角的正弦值.
直线l过点P(0,2)且与椭圆相交于M,N两点,求面积的最大值.
椭圆E:内有一点P(2,1),求经过P并且以P为中点的弦所在直线方程.
设一个焦点为,且离心率的椭圆上下两顶点分别为,直线交椭圆于两点,直线与直线交于点. (1)求椭圆的方程; (2)求证:三点共线.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号