(理)已知直线的参数方程为
(t为参数),曲线C的参数方程为
(
为参数),直线
与曲线C相交于
两点,又点
的坐标为
.
求:(1)线段的中点坐标;
(2)线段的长;
(3)的值.
(文)已知(
,
为常数).
(1)若,求
的最小正周期;
(2)若时,
的最大值为4,求
的值.
已知ABCD是梯形,AD∥BC,P是平面ABCD外一点,
BC=2AD,点E在棱PA上,且PE=2EA.
求证:PC∥平面EBD.
.甲、乙两同学利用暑假到某县进行社会实践,对该县的养鸡场连续六年来的规模进行调查研究,得到如下两个不同的信息图.(A)图表明:从第1年平均每个养鸡场出产1万只鸡上升到第6年平均每个养鸡场出产2万只鸡;(B)图表明:由第1年养鸡场个数30个减少到第6年的10个.
请你根据提供的信息解答下列问题:
(1)第二年的养鸡场的个数及全县出产鸡的总只数各是多少?
(2)哪一年的规模最大?为什么?
已知数列{an}是等差数列,bn=,b1+b2+b3=
,b1b2b3=
,求an.
首项为a1,公差为d的整数等差数列{an}满足下列两个条件:(1)a3+a5+a7=93;(2)满足an>100的n的最小值是15.试求公差d和首项a1的值.
比较大小:
(1)log0.27和log0.29;(2)log35和log65;
(3)(lgm)1.9和(lgm)2.1(m>1);(4)log85和lg4.