(本小题满分12分)
某矩形花园,
,
,
是
的中点,在该花园中有一花圃其形状是以
为直角顶点的内接Rt△
,其中E、F分别落在线段
和线段
上如图.分别记
为
(
),
的周长为
,
的面积为
(1)试求的取值范围;
(2)为何值时
的值为最小;并求
的最小值.
已知椭圆的中心在原点,焦点在
轴上,它的一个顶点恰好经过抛物线
的准线,且经过点
.
(1)求椭圆的方程;
(2)若直线
的方程为
.
是经过椭圆左焦点
的任一弦,设直线
与直线
相交于点
,记
的斜率分别为
.试探索
之间有怎样的关系式?给出证明过程.
已知函数,
.
(1)设曲线在
处的切线与直线
平行,求此切线方程;
(2)当时,令函数
,求函数
在定义域内的极值点;
(3)令,对
且
,都有
成立,求
的取值范围.
已知四边形满足
,
,
是
的中点,将
沿着
翻折成
,使面
面
,
分别为
的中点.
(1)求三棱锥的体积;
(2)证明:∥平面
;
(3)证明:平面平面
已知数列是各项均为正数的等差数列,首项
,其前
项和为
,数列
是等比数列,首项
,且
.
(1)求数列和
的通项公式;
(2)令,其中
,求数列
的前
项和
.
某区体育局组织篮球技能大赛,每名选手都要进行运球、传球、投篮三项比赛,每名选手在各项比赛中获得合格与不合格的机会相等,且互不影响.现有六名选手参加比赛,体育局根据比赛成绩对前
名选手进行表彰奖励.
(1)求至少获得一个合格的概率;
(2)求与
只有一个受到表彰奖励的概率.