体积为1的直三棱柱 中, ,求直线 与平面 所成角.
如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,∠BCF=,AD=
,EF=2.(Ⅰ)求证: AE∥平面DCF;(Ⅱ)若
,且二面角A—EF—C的大小为
,求
的长。
质点在轴上从原点
出发向右运动,每次平移一个单位或两个单位,且移动一个单位的概率为
,移动2个单位的概率为
,设质点运动到点
的概率为
。
(Ⅰ)求和
;(Ⅱ)用
表示
,
并证明
是等比数列; (Ⅲ)求
.
(本小题满分14分)
对函数Φ(x),定义fk(x)=Φ(x-mk)+nk(其中x∈(mk,
m+mk],k∈Z,m>0,n>0,且m、n为常数)为Φ(x)的第k阶阶梯函数,m叫做阶宽,n叫做阶高,已知阶宽为2,阶高为3.
(1)当Φ(x)=2x时 ①求f0(x)和fk
(x)
的解析式; ②求证:Φ(x)的各阶阶梯函数图象的最高点共线;
(本小题满分12分)设直线l(斜率存在)交抛物线y2=2px(p>0,且p是常数)于两个不同点A(x1,y1),B(x2,y2),O为坐标原点,且满足
=x1x2+2(y1+y2).
(1)求证:直线l过定点;
(2)设(1)中的定点为P,若点M在射线PA上,满足,求点M
的轨迹方程.
(本小题满分12分)已知等差数列{an2
}中,首项a12=1,公差d=1,an>0,n∈N
*.
(1)求数列{an}的通项公式;
(2)设bn=,数列{bn}的前120项和T120;