(不等式选讲)
已知x,y,z均为正数.求证:
已知圆,若椭圆
的右顶点为圆
的圆心,离心率为
.
(1)求椭圆C的方程;
(2)若存在直线,使得直线
与椭圆
分别交于
两点,与圆
分别交于
两点,点
在线段
上,且
,求圆
的半径
的取值范围.
如图,四棱锥中,底面
为平行四边形,
,
,
⊥底面
.
(1)证明:平面平面
;
(2)若二面角为
,求
与平面
所成角的正弦值.
某高校在2012年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.
(1)分别求第3,4,5组的频率;
(2)若该校决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,
(ⅰ)已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙恰有一人进入第二轮面试的概率;
(ⅱ)学校决定在这已抽取到的6名学生中随机抽取2名学生接受考官L的面试,设第4组中有名学生被考官L面试,求
的分布列和数学期望.
若的图像与直线
相切,并且切点横坐标依次成公差为
的等差数列.
(1)求和
的值;
(2)ABC中a、b、c分别是∠A、∠B、∠C的对边.若
是函数
图象的一个对称中心,且a=4,求
ABC面积的最大值.
已知且
,若
恒成立,
(1)求的最小值;(2)若
对任意的
恒成立,求实数
的取值范围.