(本小题满分12分)
已知函数,
(1)求函数的定义域;
(2)判断函数的奇偶性,并说明理由.
(本小题满分12分)
已知梯形中,
∥
,
,
,
、
分别是
上的点,
∥
,
,
是
的中点。沿
将梯形
翻折,使平面
⊥平面
(如图) .
(Ⅰ)当时,求证:
;
(Ⅱ)以为顶点的三棱锥的体积记为
,求
的最大值;
(Ⅲ)当取得最大值时,求钝二面角
的余弦值.
(本小题满分12分)
小张参加了清华大学、上海交大、浙江大学三个学校的自主招生考试,各学校是否通过相互独立,其通过的概率分别为、
、
(允许小张同时通过多个学校)
(1)小张没有通过任何一所学校的概率;
(2)设小张通过的学校个数为ξ,求ξ的分布列和它的数学期望。
(本小题满分12分)
设函数(其中
),且
的图象在
轴右侧的第一个最高点的横坐标为
。
(Ⅰ)求的值。
(Ⅱ)如果在区间
上的最小值为
,求
的值。
((本小题12分)
已知椭圆的一个顶点为(-2,0),焦点在x轴上,且离心率为.
(1)求椭圆的标准方程.
(2)斜率为1的直线与椭圆交于A、B两点,O为原点,
当△AOB的面积最大时,求直线的方程.
((本小题12分)
函数f(x)= 4x3+ax2+bx+5的图像在x=1处的切线方程为y=-12x;
(1)求函数f(x)的解析式;
(2)求函数f(x)在 [—3,1]上的最值。