(本小题满分10分)
已知向量,
,
,其中
.
(Ⅰ)当时,求
值的集合; (Ⅱ)求
的最大值.
已知,
,
在
处的切线方程为
(Ⅰ)求的单调区间与极值;
(Ⅱ)求的解析式;
(III)当时,
恒成立,求
的取值范围.
已知为抛物线
的焦点,抛物线上点
满足
(Ⅰ)求抛物线的方程;
(Ⅱ)点的坐标为(
,
),过点F作斜率为
的直线与抛物线交于
、
两点,
、
两点的横坐标均不为
,连结
、
并延长交抛物线于
、
两点,设直线
的斜率为
,问
是否为定值,若是求出该定值,若不是说明理由.
如图,已知三棱锥中,
,
,
为
中点,
为
中点,且
为正三角形。
(Ⅰ)求证://平面
;
(Ⅱ)求证:平面⊥平面
;
(III)若,
,求三棱锥
的体积.
已知某校在一次考试中,5名学生的数学和物理成绩如下表:
学生的编号i |
1 |
2 |
3 |
4 |
5 |
数学成绩x |
80 |
75 |
70 |
65 |
60 |
物理成绩y |
70 |
66 |
68 |
64 |
62 |
(Ⅰ)若在本次考试中,规定数学成绩在70以上(包括70分)且物理成绩在65分以上(包括65分)的为优秀. 计算这五名同学的优秀率;
(Ⅱ)根据上表,利用最小二乘法,求出关于
的线性回归方程
,
其中
(III)利用(Ⅱ)中的线性回归方程,试估计数学90分的同学的物理成绩.(四舍五入到整数)
设等比数列{}的前
项和为
,已知对任意的
,点
,均在函数
的图像上.
(Ⅰ)求的值;
(Ⅱ)记求数列
的前
项和
.