(本小题满分12分)
已知数列{an}的前三项与数列{bn}的前三项对应相等,且a1+2a2+22a3+…+2n-1an=8n对任意的n∈N*都成立,数列{bn+1-bn}是等差数列.
(1)求数列{an}与{bn}的通项公式;
(2)是否存在k∈N*,使得bk-ak∈(0,1)?请说明理由.
已知等比数列为递增数列,且
,
.(Ⅰ)求
;
(Ⅱ)令,不等式
的解集为
,求所有
的和.
在中,角
对边分别是
,且满足
.
(Ⅰ)求角的大小;(Ⅱ)若
,
的面积为
;求
.
已知函数(
)的最小正周期为
.
(Ⅰ)求函数的单调增区间;
(Ⅱ)将函数的图象向左平移
个单位,再向上平移
个单位,得到函数
的图象.求
在区间
上零点的个数.
在实数集R上定义运算:
(Ⅰ)求的解析式;
(Ⅱ)若在R上是减函数,求实数a的取值范围;
(Ⅲ)若,在
的曲线上是否存在两点,使得过这两点的切线互相垂直?若存在,求出切线方程;若不存在,说明理由.
四棱锥底面是平行四边形,面
面
,
,
,
分别为
的中点.
(1)求证:
(2)求证:
(3)求二面角的余弦值.