如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a.
(1)求证:MN∥平面PAD;
(2)求证:平面PMC⊥平面PCD
若 是抛物线 上的不同两点, 弦 (不平行于 轴)的垂直平分线与 轴相交于点 , 则称弦 是点 的一条 "相关弦".已知当 时,点
存在无穷多条 "相关弦" .给定 .
(I) 证明:点 的所有"相关弦"的中点的横坐标相同;
(II) 试问:点 的"相关弦"的弦长中是否存在最大值?若存在, 求其最大值(用 表示):若不存在, 请说明理由.
在一个特定时段内, 以点 为中心的7海里以内海域被设为警戒水域.点 正北55海里处有一个 雷达观测站 .某时刻测得一艘匀速直线行驶的船只位于点 北偏东 且与点 相距 海里的位置 ,经过40分钟又测得该船已行驶到点 北偏东 (其中 )且与点 相距 海里的位置C.
(Ⅰ)求该船的行驶速度(单位:海里/小时);
(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
(Ⅰ)
(II)
如图所示,四棱锥 的底面 是边长为 1 的菱形, , 是 的中点, 底面 .
(I) 证明: 平面 平面 ;
(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.
甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约.甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是 , 且面试是否合格互不影响.
求: ( I ) 至少有 1 人面试合格的概率;
( II ) 签约人数 的分布列和数学期望.