已知二次函数的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3)。
(1)求出b,c的值,并写出此二次函数的解析式;
(2)根据图象,写出函数值y为正数时,自变量x的取值范围
已知实数 、 满足 ,求代数式 的值.
计算 .
如图,在平面直角坐标系中,抛物线 经过原点 ,顶点为 .
(1)求抛物线的函数解析式;
(2)设点 为抛物线 的对称轴上的一点,点 在该抛物线上,当四边
形 为菱形时,求出点 的坐标;
(3)在(2)的条件下,抛物线 在第一象限的图象上是否存在一点 ,使得点 到直线 的距离与其到 轴的距离相等?若存在,求出直线 的函数解析式;若不存在,请说明理由.
如图, 中, , 为 延长线上一点, ,过点 作 于点 ,交 于点 ,连接 , .
(1)求证: ;
(2)求 的度数;
(3)当 时,求 的值.
某商店销售一种商品,每件的进价为50元,经市场调研发现,当该商品每件的售价为60元时,每天可销售200件;当售价高于进价时,每件的售价每增加1元,每天的销售数量将减少10件.
(1)当每件商品的售价为64元时,求该商品每天的销售数量;
(2)当每件商品的售价为多少时,销售该商品每天获得的利润最大?并求出最大利润.