((本小题满分12分)
已知F1、F2分别是椭圆的左、右焦点,曲线C是坐标原点为顶
点,
以F2为焦点的抛物线,过点F1的直线
交曲线C于x轴上方两个不同点P、Q,点P关于x轴的对称点为M,设
(I)求,求直线
的斜率k的取值范围;
(II)求证:直线MQ过定点。
(本小题满分12分)已知函数
(I)求的值;(II)解不等式:
(本小题满分12分)某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定.他们三人都有“同意”、“中立”、“反对”三类票各一张.投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为,他们的投票相互没有影响.规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目投资.(Ⅰ)求此公司决定对该项目投资的概率(Ⅱ)求此公司放弃对该项目投资且投票结果中最多有一张“中立”票的概率。
(本小题满分12分)如图,四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=BC=2,E为PA的中点,过E作平行于底面的平面EFGH,分别与另外三条侧棱相交于点F、G、H. 已知底面ABCD为直角梯形,AD∥BC,AB⊥AD,∠BCD=135°.
(1)求异面直线AF与BG所成的角的大小;
(2)求平面APB与平面CPD所成的锐二面角的大小.
如图,在四棱锥 中,底面 四边长为1的菱形, , 底面 , , 为 的中点, 为 的中点.
(Ⅰ)证明:直线
平面
;
(Ⅱ)求异面直线
与
所成角的大小;
(Ⅲ)求点
到平面
的距离.
已知函数
(Ⅰ)求函数
的最小正周期和图象的对称轴方程
(Ⅱ)求函数
在区间
上的值域