如图,已知椭圆的中心在坐标原点,焦点在轴上,它的一个顶点为
,且离心率等于
,过点
的直线
与椭圆相交于不同两点
,点
在线段
上。
(1)求椭圆的标准方程;
(2)设,若直线
与
轴不重合,
试求的取值范围。
已知函数
(1)求的值;
(2)当时,求函数
的值域.
已知函数,其中
且
.
(1)讨论的单调性;
(2) 若不等式恒成立,求实数
取值范围;
(3)若方程存在两个异号实根
,
,求证:
已知正项数列中,其前
项和为
,且
.
(1)求数列的通项公式;
(2)设是数列
的前
项和,
是数列
的前
项和,求证:
.
已知点,
的坐标分别为
,
.直线
,
相交于点
,且它们的斜率之积是
,记动点
的轨迹为曲线
.
(1)求曲线的方程;
(2)设是曲线
上的动点,直线
,
分别交直线
于点
,线段
的中点为
,求直线
与直线
的斜率之积的取值范围;
(3)在(2)的条件下,记直线与
的交点为
,试探究点
与曲线
的位置关系,并说明理由.
如图,正方形与梯形
所在的平面互相垂直,
,
∥
,
,
,
为
的中点.
(1)求证:∥平面
;
(2)求证:平面平面
;
(3)求平面与平面
所成锐二面角的余弦值.