已知,
为实常数。
(I)求的最小正周期;
(II)若在
上最大值与最小值之和为3,求
的值。
已知函数
(1)若函数的最小值是
,且
,
求
的值:
(2)若,且
在区间
恒成立,试求
取范围;
(Ⅰ)如果三段的长度均为整数,求能构成三角形的概率;
(Ⅱ)如果把铁丝截成2,2,3的三段放入一个盒子中,然后有放回地摸4次,设摸到长度为2的次数为,求
与
;
(Ⅲ)如果截成任意长度的三段,求能构成三角形的概率.
如图,已知正三棱柱
的底面边长是
,
、E是
、BC的中点,AE=DE
(1)求此正三棱柱的侧棱长;(2)正三棱柱表面积;
已知函数,
(1)求函数的最小正周期;
(2)若,求
的值.
已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A (0,)为圆心,1为半径的圆相切,又知C的一个焦点与A关于y = x对称.
(1)求双曲线C的方程;
(2)若Q是双曲线线C上的任一点,F1,F2为双曲线C的左、右两个焦点,从F1引∠F1QF2的平分线的垂线,垂足为N,试求点N的轨迹方程;
(3)设直线y =" mx" + 1与双曲线C的左支交于A、B两点,另一直线l经过M (–2,0)及AB的中点,求直线l在y轴上的截距b的取值范围.