如图,在边长为1的正方形网格内,点A、B、C、D、E均在格点处.请你判断∠x+∠y的度数,并加以证明.
已知:如图,抛物线 与坐标轴分别交于点 , , ,点 是线段 上方抛物线上的一个动点.
(1)求抛物线的解析式;
(2)当点 运动到什么位置时, 的面积有最大值?
(3)过点 作 轴的垂线,交线段 于点 ,再过点 做 轴交抛物线于点 ,连接 ,请问是否存在点 使 为等腰直角三角形?若存在,求出点 的坐标;若不存在,说明理由.
已知:如图,在 中, ,点 是斜边 的中点, ,且 , 于点 ,连接 、 .
(1)求证: ;
(2)求证: ;
(3)设 的面积为 ,四边形 的面积为 ,当 时,求 的值.
如图是小红在一次放风筝活动中某时段的示意图,她在 处时的风筝线(整个过程中风筝线近似地看作直线)与水平线构成 角,线段 表示小红身高1.5米.
(1)当风筝的水平距离 米时,求此时风筝线 的长度;
(2)当她从点 跑动 米到达点 处时,风筝线与水平线构成 角,此时风筝到达点 处,风筝的水平移动距离 米,这一过程中风筝线的长度保持不变,求风筝原来的高度 .
已知:如图,在 中, ,点 是底边 上一点且满足 , 是 的外接圆,过点 作 交 于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的半径.
为了美化市容市貌,政府决定将城区旁边一块162亩的荒地改建为湿地公园,规划公园分为绿化区和休闲区两部分.
(1)若休闲区面积是绿化区面积的 ,求改建后的绿化区和休闲区各有多少亩?
(2)经预算,绿化区的改建费用平均每亩35000元,休闲区的改建费用平均每亩25000元,政府计划投入资金不超过550万元,那么绿化区的面积最多可以达到多少亩?