11. (2009年高考辽宁卷)
如图,A、B、C、D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶,测量船于水面A处测得B点和D点的仰角分别为75°、30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B、D间距离与另外哪两点间距离相等,然后求B、D的距离(计算结果精确到0.01 km,
≈1.414,≈2.449).
( 10分) 已知函数
(1)(4′) 求
(2)(6′)求的最小值
已知集合,试用列举法表示集合
、已知,
(
),直线
与函数
、
的图像都
相切,且与函数的图像的切点的横坐标为1.
(Ⅰ)求直线的方程及
的值;
(Ⅱ)若(其中
是
的导函数),求函数
的最大值;
(Ⅲ)当时,求证:
.
已知定点A(-1,0),F(2,0),定直线l:x=,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N
(Ⅰ)求E的方程;
(Ⅱ)试判断以线段MN为直径的圆是否过点F,并说明理由
已知点F(0, 1),直线:
,圆C:
.
(Ⅰ) 若动点到点F的距离比它到直线
的距离小1,求动点
的轨迹E的方程;
(Ⅱ) 过轨迹E上一点P作圆C的切线,切点为A、B,当四边形PACB的面积S最小时,求点P的坐标及S的最小值。