如图,四棱锥P-ABCD的底面为矩形,侧棱PD垂直于底面,PD=DC=2BC,E为棱PC上的点,且平面BDE⊥平面PBC.
(1)求证:E为PC的中点;
(2)求二面角A-BD-E的大小.
如图,在四棱锥P-ABCD中,PD⊥面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD =12 BC. 点E、F分别是棱PB、边CD的中点.(1)求证:AB⊥面PAD; (2)求证:EF∥面PAD
如图,摩天轮的半径为50 m,点O距地面的高度为60 m,摩天轮做匀速转动,每3 min转一圈,摩天轮上点P的起始位置在最低点处.
(1)试确定在时刻t(min)时点P距离地面的高度;
(2)在摩天轮转动的一圈内,有多长时间点P距离地面超过85 m?
已知函数(
,
为自然对数的底数).
(1)求函数的最小值;
(2)若≥0对任意的
恒成立,求实数
的值;
(3)在(2)的条件下,证明:
直角坐标平面上,为原点,
为动点,
,
. 过点
作
轴于
,过
作
轴于点
,
. 记点
的轨迹为曲线
,
点、
,过点
作直线
交曲线
于两个不同的点
、
(点
在
与
之间).
(1)求曲线的方程;
(2)是否存在直线,使得
,并说明理由.
已知数列的前
项和为
,点
在直线
上.数列
满足
,且
,前9项和为153.
(1)求数列、
{的通项公式;
(2)设,数列
的前
和为
,求使不等式
对一切
都成立的最大正整数
的值;
(3)设,问是否存在
,使得
成立?若存在,求出
的值;若不存在,请说明理由.