对于数列:
,若满足
,则称数列
为“0-1
数列”.定义变换,
将“0-1数列”
中原有的每个1都变成0,1,原有的每个0都变成1,0。例如
:1,0,1,则
:
设
是“0-1数列”,令
,
…。
(1)若数列:
求数列
;
(2)若数列共有10项,则数列
中连续两项
相等的数对至少有多少对?请说明理由;
(3)若为0,1,记数列
中连续两项都是0的数对
个数为
,
,
求关于
的表达式
已知平面上三个向量,其中
.
(1)若,且
∥
,求
的坐标;
(2)若,且
,求
与
夹角
.
已知.
(1)若存在单调递减区间,求实数
的取值范围;
(2)若,求证:当
时,
恒成立;
(3)利用(2)的结论证明:若,则
.
已知顶点为原点的抛物线
的焦点
与椭圆
的右焦点重合,
与
在第一和第四象限的交点分别为
.
(1)若△AOB是边长为的正三角形,求抛物线
的方程;
(2)若,求椭圆
的离心率
;
(3)点为椭圆
上的任一点,若直线
、
分别与
轴交于点
和
,证明:
.
在正项等比数列中,公比
,
且
和
的等比中项是
.
(1)求数列的通项公式;
(2)若,判断数列
的前
项和
是否存在最大值,若存在,求出使
最大时
的值;若不存在,请说明理由.
如图,在三棱锥中,
和
都是以
为斜边的等腰直角三角形,
分别是
的中点.
(1)证明:平面//平面
;
(2)证明:;
(3)若,求三棱锥
的体积.