某企业生产一种产品时,固定成本为5000元,而每生产100台产品时直接消耗成本要增加2500元,市场对此商品年需求量为500台,销售的收入函数为R(x)=5x-x2(万元)(0≤x≤5),其中x是产品售出的数量(单位:百台)
(1)把利润表示为年产量的函数;
(2)年产量多少时,企业所得的利润最大?
(3)年产量多少时,企业才不亏本?
如图,已知椭圆(a>b>0)的离心率
,过点A(0,-b)和B(a,0)的直线与原点的距离为
.
(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.
问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
如图,已知四棱锥中,底面
是直角梯形,
是线段
上不同于
的任意一点,且
(1)求证:;
(2)求证:;
(3)求三棱锥的体积。
已知函数
(1)求曲线在点
处的切线的方程;
(2)直线为曲线
的切线,且经过原点,求直线
的方程及切点的坐标;
(3)如果曲线的某一切与直线
垂直,求切点坐标和切线方程。
如图,四棱锥P-ABCD的底面为矩形,且AB=,BC=1,E,F分别为AB,PC中点.
(1)求证:EF∥平面PAD;
(2)若平面PAC⊥平面ABCD,求证:平面PAC⊥平面PDE.
已知命题“方程
表示焦点在
轴上的椭圆”,命题
“方程
表示双曲线”.
(1)若是真命题,求实数
的取值范围;
(2)若是真命题,求实数
的取值范围;
(3)若“”是真命题,求实数
的取值范围.