(本小题满分16分)
已知函数的导数是
.
(1)求时,
在x=1处的切线方程。
(2)当时,求证:对于任意的两个不等的正数
,有
;
(3)对于任意的两个不等的正数,若
恒成立,求
的取值范围.
已知、
分别为椭圆
:
的上、下焦点,其中
也是抛物线
:
的焦点,点
是
与
在第二象限的交点,且
。
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点(1,3)和圆
:
,过点
的动直线
与圆
相交于不同的两点
,在线段
取一点
,满足:
,
(
且
)。
求证:点总在某定直线上。
已知函数(
)是定义在
上的奇函数,且
时,函数
取极值1.
(Ⅰ)求函数的解析式;
(Ⅱ)令,若
(
),不等式
恒成立,求实数
的取值范围;
已知数列的前n项和为
,
,且
,数列
满足
,数列
的前n项和为
(其中
).
(Ⅰ)求和
;
(Ⅱ)若对任意的,不等式
恒成立,求实数
的取值范围
在正三角形中,
、
、
分别是
、
、
边上的点,满足
(如图1).将△
沿
折起到
的位置,使二面角
成直二面角,连结
、
(如图2)
(Ⅰ)求证:⊥平面
;
(Ⅱ)求二面角的余弦值.
某市为了推动全民健身运动在全市的广泛开展,该市电视台开办了健身竞技类栏目《健身大闯关》,规定参赛者单人闯关,参赛者之间相互没有影响,通过关卡者即可获奖。现有甲、乙、丙人参加当天的闯关比赛,已知甲获奖的概率为
,乙获奖的概率为
,丙获奖而甲没有获奖的概率为
。
(Ⅰ)求三人中恰有一人获奖的概率;
(Ⅱ)求三人中至少有两人获奖的概率。