游客
题文

(本小题满分12分)(注意:在试题卷上作答无效)
已知的顶点A在射线上,两点关于x轴对称,0为坐标原点,
且线段AB上有一点M满足当点A在上移动时,记点M的轨迹为W.
(Ⅰ)求轨迹W的方程;
(Ⅱ)设是否存在过的直线与W相交于P,Q两点,使得若存在,
求出直线;若不存在,说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知函数
(1)当a=1时,解不等式
(2)若存在成立,求a的取值范围.

在极坐标系中,曲线的极坐标方程为,现以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为为参数)
(1)写出直线l和曲线C的普通方程;
(2)设直线l和曲线C交于A,B两点,定点P(—2,—3),求|PA|·|PB|的值.

如图,在△ABC中,CD是∠ACB的角平分线,△ADC的外接圆交BC于点E,AB=2AC
(1)求证:BE=2AD;
(2)当AC=3,EC=6时,求AD的长.

已知函数函数处取得极值1.
(1)求实数b,c的值;
(2)求在区间[-2,2]上的最大值.

已知圆的圆心在坐标原点,且恰好与直线相切,设点A为圆上一动点,轴于点,且动点满足,设动点的轨迹为曲线
(1)求曲线C的方程,
(2)直线l与直线l,垂直且与曲线C交于B、D两点,求△OBD面积的最大值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号