某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
(1)由表中数据分析,是否有把握认为收看新闻节目的观众与年龄有关?
(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?
(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率。
附:
随机变量的概率分布:
如图,四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=CD,E是PC的中点。
(1)证明PA平面BDE;
(2)求二面角B-DE-C的平面角的余弦值;
(3)在棱PB上是否存在点F,使PB⊥平面DEF?
证明你的结论。
一袋中有m(m∈N*)个红球,3个黑球和2个白球,现从中任取2个球。
(1)当m=4时,求取出的2个球颜色相同的概率;
(2)当m=3时,设ξ表示取出的2个球中黑球的个数,求ξ的概率分布及数学期望;
(3)如果取出的2个球颜色不相同的概率小于,求m的最小值。
已知向量a=(cosx,sinx),b=(-cosx,cosx),c=(-1,0)。
(1)若,求向量a,c的夹角;
(2)当时,求函数f(x)=2a·b+1的最大值。