已知抛物线y=ax2+bx+c与直线y=mx+n相交于两点,这两点的坐标分别是(0,)和
(m-b,m2-mb+n),其中a,b,c
,m,n为实数,且a,m不为0.
(1)求c的值;
(2)设抛物线y=ax2+bx+c与x轴的两个交点是(x1,0)和(x2,0),求x1x2的值;
(3)当-1≤x≤1时,设抛物线y=ax2+bx+c上与x轴距离最大的点为P(xo,yo ),求这时|yo|的最小值.
如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.
(1)求证:△ABF≌△ECF:
(2)若∠AFC=2∠D,连接AC、BE,求证:四边形ABEC是矩形.
如图,在△ABC中,D是AB的中点,E是CD的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.
(1)求证:DB=CF;
(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.
如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.
(1)求证:四边形AEBD是矩形.
(2)当△ABC满足什么条件时,矩形AEBD是正方形?并说明理由.
如图,已知在四边形ABCD中,AE⊥BD于E,CF⊥BD于F,AE=CF,BF=DE.求证:四边形ABCD是平行四边形.
如图,在△ABC中,点D、E分别是AB、AC的中点,F是BC延长线上的一点,且.试猜想DE与CF有怎样的数量关系,并说明理由.