如图6,在平面直角坐标系中,设点
,直线
:
,点
在直线
上移动,
是线段
与
轴的交点,
.
(I)求动点的轨迹的方程
;
(II)设圆过
,且圆心
在曲线
上,
是圆
在
轴上截得的弦,当
运动时弦长
是否为定值?请说明理由.
(本小题满分12分)已知向量。
(1)若f(x)=1,求cos(+x)的值;
(2)在△ABC中,角A、B、C的对边分别是a、b、c,且满足(2a-c)cosB=bcosC,
求函数f(A)的取值范围。
(本小题满分10分)某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40, 50),[50, 60),…,[90, 100] 后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:
(I)求分数在 [70,80)内的频率,并补全这个频率分布直方图;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(Ⅲ) 根据频率分布直方图估计这次高一年级期中考试的学生成绩的中位数(保留整数)。
(本小题满分12分)已知各项均为正数的数列中,
是数列
的前
项和,对任意
,有
.函数
,数列
的首项
.
(Ⅰ)求数列的通项公式;
(Ⅱ)令求证:
是等比数列并求
通项公式;
(Ⅲ)令,
,求数列
的前n项和
.
(本小题满分12分)已知某种稀有矿石的价值(单位:元)与其重量
(单位:克)的平方成正比,且
克该种矿石的价值为
元。
⑴写出(单位:元)关于
(单位:克)的函数关系式;
⑵若把一块该种矿石切割成重量比为的两块矿石,求价值损失的百分率;
⑶把一块该种矿石切割成两块矿石时,切割的重量比为多少时,价值损失的百分率最大。(注:价值损失的百分率;在切割过程中的重量损耗忽略不计)
(本小题满分12分)如图,在矩形中,
,又
⊥平面
,
.
(Ⅰ)若在边上存在一点
,使
,
求的取值范围;
(Ⅱ)当边上存在唯一点
,使
时,
求二面角的余弦值.