22.已知抛物线C的顶点在原点,焦点在y轴正半轴上,点到其准线的距离等于5. (Ⅰ)求抛物线C的方程; (Ⅱ)如图,过抛物线C的焦点的直线从左到右依次与抛物线C及圆交于A、C、D、B四点,试证明为定值;
(Ⅲ)过A、B分别作抛物C的切线且交于点M,求与面积之和的最小值.
已知函数(均为正常数),设函数在处有极值. (1)若对任意的,不等式总成立,求实数的取值范围; (2)若函数在区间上单调递增,求实数的取值范围.
已知数列为等差数列,数列为等比数列,若,且. (1)求数列,的通项公式; (2)是否存在,使得,若存在,求出所有满足条件的;若不存在,请说明理由.
如图,在直三棱柱中,,点分别为和的中点. (1)证明:平面; (2)平面MNC与平面MAC夹角的余弦值.
解关于x的不等式:().
函数,数列,满足0<<1,,数列满足, (Ⅰ)求函数的单调区间; (Ⅱ)求证:0<<<1; (Ⅲ)若且<,则当n≥2时,求证:>
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号