已知数列{}中,
,前n项和
.
(I)求a2,a3以及{}的通项公式;
(II)设,求数列{
}的前n项和Tn.
如图,PA平面ABCD,四边形ABCD为矩形,PA=AB=
,AD=1,点F是PB的中点,点E在边BC上移动.
(I)求三棱锥E—PAD的体积;
(II)试问当点E在BC的何处时,有EF//平面PAC;
(1lI)证明:无论点E在边BC的何处,都有PEAF.
已知a,b,c分别为ABC的三个内角A,B,C的对边,
=(sinA,1),
=(cosA,
),且
//
.
(I)求角A的大小;
(II)若a=2,b=2,求
ABC的面积.
某校从参加市联考的甲、乙两班数学成绩110分以上的同学中各随机抽取8人,将这l6人的数学成绩编成茎叶图,如图所示.
(I)茎叶图中有一个数据污损不清(用△表示),若甲班抽出来的同学平均成绩为l22分,试推算这个污损的数据是多少?
(Ⅱ)现要从成绩在130分以上的5位同学中选2位作数学学习方法介绍,请将所有可能的结果列举出来,并求选出的两位同学不在同一个班的概率.
已知函数f(x)=2ax--(2+a)lnx(a≥0)
(Ⅰ)当时,求
的极值;
(Ⅱ)当a>0时,讨论的单调性;
(Ⅲ)若对任意的a∈(2,3),x1,x2∈[1,3],恒有成立,求实数m的取值范围。