游客
题文

(本小题12分)
已知定义在R上的函是奇函数
(1)求的值;
(2)判断的单调性,并用单调性定义证明;
(3)若对任意的,不等式恒成立,求实数的取值范围。

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了 100 天空气中的 PM 2 . 5 S O 2 浓度(单位: μ g/ m 3 ),得下表:

S O 2

PM 2 . 5

[ 0 , 50 ]

( 50 , 150 ]

( 150 , 475 ]

[ 0 , 35 ]

32

18

4

( 35 , 75 ]

6

8

12

( 75 , 115 ]

3

7

10

(1)估计事件"该市一天空气中 PM 2 . 5 浓度不超过 75 ,且 S O 2 浓度不超过 150 "的概率;

(2)根据所给数据,完成下面的 2 × 2 列联表:

S O 2

PM 2 . 5

[ 0 , 150 ]

( 150 , 475 ]

[ 0 , 75 ]



( 75 , 115 ]



(3)根据(2)中的列联表,判断是否有 99 % 的把握认为该市一天空气中 PM 2 . 5 浓度与 S O 2 浓度有关?

附: K 2 = n ( ad - bc ) 2 ( a + b ) ( c + d ) ( a + c ) ( b + d )

P ( K 2 > K )

0.050

0.010

0.001

K

3.841

6.635

10.828

已知公比大于 1 的等比数列 { a n } 满足 a 2 + a 4 = 20 , a 3 = 8

(1)求 { a n } 的通项公式;

(2)记 b m { a n } 在区间 ( 0 , m ] ( m N * ) 中的项的个数,求数列 { b m } 的前 100 项和 S 100

在① ac = 3 ,② c sin A = 3 ,③ c = 3 b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求 c 的值;若问题中的三角形不存在,说明理由.

问题:是否存在 ABC ,它的内角的对边分别为 a , b , c ,且 sin A = 3 sin B C = π 6 ,________?

注:如果选择多个条件分别解答,按第一个解答计分.

已知函数 f ( x ) = x - a 2 + | x - 2 a + 1 | .

(1)当 a = 2 时,求不等式 f ( x ) 4 的解集;

(2)若 f ( x ) 4 ,求 a的取值范围.

已知曲线C1C2的参数方程分别为C1θ为参数),C2 x = t + 1 t , y = t - 1 t t为参数).

(1)将C1C2的参数方程化为普通方程;

(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号