游客
题文

设椭圆的焦点分别为,直线轴于点,且

(1)试求椭圆的方程;
(2)过分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形面积的最大值和最小值.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

(本小题满分12分)
已知函数
的图象的相邻两对称轴之间距离为2,且过点
(1)求的表达式;
(2)求的单调递增区间。

(本题满分 13分)
集合为集合个不同的子集,对于任意不大于的正整数满足下列条件:
,且每一个少含有三个元素;
的充要条件是(其中)。
为了表示这些子集,作列的数表(即数表),规定第行第列数为:
(1)该表中每一列至少有多少个1;若集合,请完成下面数表(填符合题意的一种即可);

(2)用含的代数式表示数表中1的个数,并证明
(3)设数列项和为,数列的通项公式为:,证明不等式:对任何正整数都成立。

(本题满分 13分)设函数).
(1)当时,求的极值;
(2)当时,求的单调区间.

(本题13分)已知抛物线的焦点轴上,抛物线上一点到准线的距离是,过点的直线与抛物线交于两点,过两点分别作抛物线的切线,这两条切线的交点为
(1)求抛物线的标准方程;
(2)求的值;
(3)求证:的等比中项.

(本小题满分12分)如图,多面体ABCDS中,面ABCD为矩形,
(1)求证:CD;
(2)求AD与SB所成角的余弦值;
(3)求二面角A—SB—D的余弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号