(本小题满分12分)
已知 F1、F2是椭圆的两焦点,
是椭圆在第一象限弧上一点,且满足
=1.过点P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.
(1)求P点坐标;
(2)求证直线AB的斜率为定值;
(3)求△PAB面积的最大值.
(本小题满分12分)为了提高我市的教育教学水平,市教育局打算从红塔区某学校推荐的10名教师中任选3人去参加支教活动。这10名教师中,语文教师3人,数学教师4人,英语教师3人.
求:(1)选出的语文教师人数多于数学教师人数的概率;
(2)选出的3人中,语文教师人数的分布列和数学期望.
(本小题满分12分)如图所示,直三棱柱的各条棱长均为
,
是侧棱
的中点.
(1)求证:平面平面
;
(2)求平面与平面
所成二面角(锐角)的大小.
(本小题满分12分)设的内角
所对的边为
,
(1)求角的大小;
(2)若,
,
为
的中点,求
的长.
(本小题满分12分)已知函数(
为常数,
为自然对数的底数)是实数集
上的奇函数,函数
在区间
上是减函数.
(1)求实数的值;
(2)若在
上恒成立,求实数
的取值范围;
(3)讨论关于的方程
的根的个数.
(本小题满分12分)已知等比数列是递增数列,
,又数列
满足
,
是数列
的前
项和.
(1)求;
(2)若对任意,都有
成立,求正整数
的值