本题共有3个小题,第(1)小题满分4分,第(2)小题满分5
分,第(3)小题满分7分.
将边长分别为1、2、3、…、n、n+1、…()的正方形叠放在一起,形成如图所示的图形,由小到大,依次记各阴影部分所在的图形为第1个、第2个、……、第n个阴影部分图形.设前n个阴影部分图形的面积的平均值为
.记数列
满足
,
(1)求的表达式;
(2)写出的值,并求数列
的通项公式;
(3)记,若不等式
有解,求
的取值范围.
已知的边
所在直线的方程为
,
满足
, 点
在
所在直线上且
.
(Ⅰ)求外接圆的方程;
(Ⅱ)一动圆过点,且与
的外接圆外切,求此动圆圆心的轨迹
的方程;
(Ⅲ)过点斜率为
的直线与曲线
交于相异的
两点,满足
,求
的取值范围.
数列的各项均为正数,
为其前
项和,对于任意
,总有
成等差数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,数列
的前
项和为
,求证:
.
如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,,E、F分别是AB、PD的中点.
(Ⅰ)求证:平面PCE 平面PCD;
(Ⅱ)求四面体PEFC的体积.
甲、乙两个盒子里各放有标号为1,2,3,4的四个大小形状完全相同的小球,从甲盒中任取一小球,记下号码后放入乙盒,再从乙盒中任取一小球,记下号码
.
(Ⅰ)求的概率;
(Ⅱ)设随机变量,求随机变量
的分布列及数学期望.
已知函数为偶函数, 且
(Ⅰ)求的值;
(Ⅱ)若为三角形
的一个内角,求满足
的
的值.