在平面直角坐标系中,一动点P(,y)从M(1,0)出发,沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四点组成的正方形边线(如图①)按一定方向运动。图②是P点运动的路程s(个单位)与运动时间
(秒)之间的函数图象,图③是P点的纵坐标y与P点运动的路程s之间的函数图象的一部分.
(1)求s与
之间的函数关系式。
(2)求与图③相对应的P点的运动路径;及P点出发多少秒首次到达点B;
(3)写出当3≤s≤8时,y与s之间的函数关系式,并在图③中补全函数图象.
先化简,再求值:,其中a=-2,b=
.
已知:如图,抛物线与
轴交于点
,与
轴交于
、
两点,点
的坐标为
.
(1)求抛物线的解析式及顶点的坐标;
(2)设点是在第一象限内抛物线上的一个动点,求使与四边形
面积相等的四边形
的点
的坐标;
(3)求的面积.
已知:如图,等边△ABC中,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,∠BAE=∠BDF,点M在线段DF上,∠ABE=∠DBM.
(1)猜想:线段AE、MD之间有怎样的数量关系,并加以证明;
(2)在(1)的条件下延长BM到P,使MP=BM,连接CP,若AB=7,AE=,求tan∠BCP的值.
已知:关于的一元二次方程
(1) 若方程有两个不相等的实数根,求的取值范围;
(2)求证:无论为何值,方程总有一个固定的根;
(3)若为整数,且方程的两个根均为正整数,求
的值.
如图,将正方形沿图中虚线(其)剪成① ② ③ ④ 四块图形,用这四块图形恰好能拼成一个矩形(非正方形).
(1)画出拼成的矩形的简图;
(2)求的值.