.(本小题满分12分)口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.
(Ⅰ)求甲赢且编号的和为6的事件发生的概率;
(Ⅱ)这种游戏规则公平吗?试说明理由.
某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有 位学生,每次活动均需该系 位学生参加( 和 都是固定的正整数).假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系 位学生,且所发信息都能收到.记该系收到李老师或张老师所发活动通知信息的学生人数为 .
(Ⅰ)求该系学生甲收到李老师或张老师所发活动通知信息的概率;
(Ⅱ)求使
取得最大值的整数
.
设函数
,证明:
(Ⅰ)对每个
,存在唯一的
,满足
;
(Ⅱ)对任意
,由(Ⅰ)中
构成的数列
满足
.
如图,圆锥顶点为
.底面圆心为
,其母线与底面所成的角为
.
和
是底面圆
上的两条平行的弦,轴
与平面
所成的角为
,
(Ⅰ)证明:平面
与平面
的交线平行于底面;
(Ⅱ)求
.
设椭圆
的焦点在
轴上.
(Ⅰ)若椭圆
的焦距为1,求椭圆
的方程;
(Ⅱ)设
分别是椭圆的左、右焦点,
为椭圆
上第一象限内的点,直线
交
轴与点
,并且
,证明:当
变化时,点
在某定直线上.
设函数 ,其中 ,区间
(Ⅰ)求
的长度(注:区间
的长度定义为
);
(Ⅱ)给定常数
,当
时,求
长度的最小值.