已知在区间[0,1]上是增函数,在区间
上是减函数,又
(Ⅰ)求的解析式;
(Ⅱ)若在区间(m>0)上恒有
≤x成立,求m的取值范围.
如图,平面
凸多面体
的体积为
,
为
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面平面
.
已知点是函数
的图象上一点,数列
的前n项和
.
(Ⅰ)求数列的通项公式;
(Ⅱ)将数列前2013项中的第3项,第6项, ,第3k项删去,求数列
前2013项中剩余项的和.
已知函数
的最小正周期为
.
(Ⅰ)求的值;
(Ⅱ)求函数在区间
上的值域.
已知函数.
(Ⅰ)求函数的极大值.
(Ⅱ)求证:存在,使
;
(Ⅲ)对于函数与
定义域内的任意实数x,若存在常数k,b,使得
和
都成立,则称直线
为函数
与
的分界线.试探究函数
与
是否存在“分界线”?若存在,请给予证明,并求出k,b的值;若不存在,请说明理由.
在平面直角坐标系中,已知椭圆
:
的离心率
,且椭圆C上一点
到点Q
的距离最大值为4,过点
的直线交椭圆
于点
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为椭圆上一点,且满足(O为坐标原点),当
时,求实数
的取值范围.