(本小题满分15分)
已知抛物线
上任一点到焦点的距离比到y轴距离大1。
(1)求抛物线的方程;
(2)设A,B为抛物线上两点,且AB不与x轴垂直,若线段AB的垂直平分线恰过点M(4,0),求
的面积的最大值。
(本题共14分)已知函数
。
(1)求
的定义域;
(2)判定
的奇偶性;
(3)是否存在实数
,使得
的定义域为
时,值域为
?若存在,求出实数
的取值范围;若不存在,请说明理由。
(本题共13分)已知函数
在
上满足
,且当
时,
。
(1)求
、
的值;
(2)判定
的单调性;
(3)若
对任意x恒成立,求实数
的取值范围。
(本题共12分)有一小型自来水厂,蓄水池中已有水450吨,水厂每小时可向蓄水池注水80吨,同时蓄水池向居民小区供水,
小时内供水总量为
吨。现在开始向池中注水并同时向居民小区供水,问:
(1)多少小时后蓄水池中的水量最少?
(2)如果蓄水池中存水量少于150吨时,就会出现供水紧张,那么有几个小时供水紧张?
(本题共12分)设
为定义在
上的偶函数,当
时,
,且
的图象经过点
,又在
的图象中,有一部分是顶点为(0,2),且过
的一段抛物线。
(1)试求出
的表达式;
(2)求出
值域;
(本题共12分)
(1)计算
(2)解方程: