某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
|
文艺节目 |
新闻节目 |
总计 |
20至40岁 |
40 |
18 |
58 |
大于40岁 |
15 |
27 |
42 |
总计 |
55 |
45 |
100 |
(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(答:“是”或“否”)
(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?
(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率
甲盒有标号分别为1、2、3的3个红球;乙盒有标号分别为1、2、…、
的个黑球,从甲、乙两盒中各抽取一个小球,抽到标号为1号红球和
号黑球的概率为
.
(Ⅰ)求的值;
(Ⅱ)现从甲乙两盒各随机抽取1个小球,抽得红球的得分为其标号数;抽得黑球,若标号数为奇数,则得分为1,若标号数为偶数,则得分为0.求得分为2的概率.
在中,角
所对的边分别为
.向量
,
.已知
,
.
(Ⅰ)求的大小;
(Ⅱ)判断的形状并证明.
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若当时,不等式
恒成立,求实数
的取值范围.
已知定圆,动圆
过点
且与圆
相切,记动圆圆
心的轨迹为
.
(Ⅰ)求曲线的方程;
(Ⅱ)若点为曲线
上任意一点,证明直线
与曲线
恒有且只有一个公共点.
(Ⅲ)由(Ⅱ)你能否得到一个更一般的结论?并且对双曲线写出一个类似的结论(皆不必证明).
已知数列满足
,
(
且
)
(Ⅰ)证明数列是常数列;
(Ⅱ)求数列的通项公式;
(Ⅲ)当时,求数列
的前
项和.