某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
|
文艺节目 |
新闻节目 |
总计 |
20至40岁 |
40 |
18 |
58 |
大于40岁 |
15 |
27 |
42 |
总计 |
55 |
45 |
100 |
(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(答:“是”或“否”)
(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?
(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率
(本小题满分10分)选修4-1:几何证明选讲
如图,⊙的直径
的延长线与弦
的延长线相交于点
,
为⊙
上一点,AE=AC ,
交
于点
,且
,
(Ⅰ)求的长度.
(Ⅱ)若圆F与圆内切,直线PT与圆F切于点T,求线段PT的长度
已知函数(
为实数).
(Ⅰ)当时,求函数
的图象在点
处的切线方程;
(Ⅱ)设函数(其中
为常数),若函数
在区间
上不存在极值,且存在
满足
,求
的取值范围;
(Ⅲ)已知,求证:
.
设A是圆上的任意一点,
是过点A与
轴垂直的直线,D是直线
与
轴的交点,点M在直线
上,且满足
.当点A在圆上运动时,记点M的轨迹为曲线
.
(1)求曲线的标准方程;
(2)设曲线的左右焦点分别为
、
,经过
的直线
与曲线
交于P、Q两点,若
,求直线
的方程.
某同学参加语、数、外三门课程的考试,设该同学语、数、外取得优秀成绩的概率分别为,m,n(m>n),设该同学三门课程都取得优秀成绩的概率为
,都未取得优秀成绩的概率为
,且不同课程是否取得优秀成绩相互独立.
(1)求m,n;
(2)设X为该同学取得优秀成绩的课程门数,求EX.
如图,已知四棱锥的底面
是正方形,侧棱
底面
,
,
是
的中点.
(1)证明平面
;
(2)求二面角的余弦值.