.(本小题满分14分)
已知矩形
所在平面,
,
为线段
上一点,
为线段
的中点.(1)当E为PD的中点时,求证:;
(2)当时,求证:BG//平面AEC.
(文科)已知抛物线:
,
为直线
上任意一点,过点
作抛物线
的两条切线
,切点分别为
,
.
(Ⅰ)当的坐标为
时,求过
三点的圆的方程;(Ⅱ)证明:以
为直径的圆恒过点
.
(理科)已知顶点在坐标原点,焦点在轴正半轴的抛物线上有一点
,
点到抛物线焦点的距离为1.
(1)求该抛物线的方程;
(2)设为抛物线上的一个定点,过
作抛物线的两条互相垂直的弦
,
,求证:
恒过定点
.
(3)直线与抛物线交于
,
两点,在抛物线上是否存在点
,使得△
为以
为斜边的直角三角形.
(文科)已知椭圆:
的离心率是
,其左、右顶点分别为
,
,
为短轴的端点,△
的面积为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)为椭圆
的右焦点,若点
是椭圆
上异于
,
的任意一点,直线
,
与直线
分别交于
,
两点,证明:以
为直径的圆与直线
相切于点
.
(理科)在平面直角坐标系中,设点
,以线段
为直径的圆经过原点
.
(Ⅰ)求动点的轨迹
的方程;
(Ⅱ)过点的直线
与轨迹
交于两点
,点
关于
轴的对称点为
,试判断直线
是否恒过一定点,并证明你的结论.
(文科)已知椭圆:
的上顶点为
,两个焦点为
、
,
为正三角形且周长为6.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知圆:
,若直线
与椭圆
只有一个公共点
,且直线
与圆
相切于点
;求
的最大值.