(本小题满分14分)如图,长方体ABCD—A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.
(1)求证:直线∥平面
;
(2)求证:平面平面
;
(3)求三棱锥D—PAC的体积。
一笼子中装有2只白猫,3只黑猫,笼门打开每次出来一只猫,每次每只猫都有可能出来.
(1)第三次出来的是只白猫的概率;
(2)记白猫出来完时笼中所剩黑猫数为,试求
的概率分布列及期望.
设函数
(1)当时,求曲线
处的切线方程;
(2)当时,求
的极大值和极小值;
(3)若函数在区间
上是增函数,求实数
的取值范围.
已知椭圆的长轴长为,焦点是
,点
到直线
的距离为
,过点
且倾斜角为锐角的直线
与椭圆交于A、B两点,使得
.
(1)求椭圆的标准方程; (2)求直线l的方程.
已知直三棱柱中,
,
,
是
和
的交点, 若
.
(1)求的长;(2)求点
到平面
的距离;
(3)求二面角的平面角的正弦值的大小.
把函数的图象按向量
平移得到函数
的图象.
(1)求函数的解析式; (2)若
,证明:
.