已知椭圆的长轴长为
,焦点是
,点
到直线
的距离为
,过点
且倾斜角为锐角的直线
与椭圆交于A、B两点,使得
.
(1)求椭圆的标准方程; (2)求直线l的方程.
(本题满分13分)
已知直线
:
,
:
,求:
(1)直线
与
的交点
的坐标;(2)过点
且与
垂直的直线方程.
(本小题满分13分)在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.
(1)求证:EF∥平面CB1D1;
(2)求证:平面CAA1C1⊥平面CB1D1
(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)如图1,在四边形
中,点C(1,3).(1)求OC所在直线的斜率;
(2)过点C做CD⊥AB于点D,求CD所在直线的方程.
(本小题满分14分)
已知抛物线
和直线
没有公共点(其中
、
为常数),动点
是直线
上的任意一点,过
点引抛物线
的两条切线,切点分别为
、
,且直线
恒过点
.
(1)求抛物线
的方程;
(2)已知
点为原点,连结
交抛物线
于
、
两点,
证明:
.
(本小题满分13分)
已知函数
.
(1)当
且
,
时,试用含
的式子表示
,并讨论
的单调区间;
(2)若
有零点,
,且对函数定义域内一切满足
的实数
有
.
①求
的表达式;
②当
时,求函数
的图象与函数
的图象的交点坐标.