某城市理论预测2000年到2004年人口总数与年份的关系如下表所示
| 年份200x(年) |
0 |
1 |
2 |
3 |
4 |
| 人口数y(十万) |
5 |
7 |
8 |
11 |
19 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,求最小二乘法求出y关于x的线性回归方程y=bx+a;
(3) 据此估计2012年.该 城市人口总数.
(参考数值:0×5+1×7+2×8+3×11+4×19=132,
,公式见卷首)
(本小题满分12分)已知双曲线C:
=1(a>0,b>0)的一条准线方程为x=
,一个顶点到一条渐近线的距离为
.
(1)求双曲线C的方程;
(2)动点P到双曲线C的左顶点A和右焦点F的距离之和为常数(大于|AF|),且cosAPF的最小值为-
,求动点P的轨迹方程.
(本小题满分12分)某厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知该厂生产这种仪器,次品率p与日产量x(件)之间大体满足关系:
.已知每生产一件合格的仪器可盈利A元,但每生产一件次品将亏损
元,厂方希望定出适当的日产量.
(1)试判断:当日产量(件)超过94件时,生产这种仪器能否赢利?并说明理由;
(2)当日产量x件不超过94件时,试将生产这种仪器每天的赢利额T(元)表示成日产量x(件)的函数;
(3)为了获得最大利润,日产量x件应为多少件?
(本小题满分12分)在△OAB中,
,AD与BC交于点M,设
=a,
=b,
(1)用a,b表示
;
(2)在线段AC上取一点E,在线段BD上取一点F,使EF过M点,设
=p
,
=q
,求证:
=1.
(本小题满分12分)如图,已知:PD⊥平面ABCD,AD⊥DC,AD∥BC,PD∶DC∶BC=1∶1∶
.
(1)求PB与平面PDC所成角的大小;
(2)求二面角D—PB—C的正切值.
(本小题满分12分)已知等差数列{an}的首项a1=1,公差d>0,且其第二项、第五项、第十四项分别是等比数列{bn}的第二、三、四项.
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}对任意自然数n均有
=an+1成立,求c1+c2+c3+…+c2003的值.