为了某班学生喜爱打篮球是否与性别有关,对本班50人进行问卷调查得到了如下的列联表:
已知在全部50人中随机抽取1人,抽到不爱打篮球的学生的概率为.
(1)请将上面的列联表补充完整;
(2)是否有把握在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关;请说明理由.
附参考公式:
P(![]() |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
k |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(本小题满分12分) “上海世博会”于2010年5月1日至10月31日在上海举行。世博会“中国馆·贵宾厅”作为接待中外贵宾的重要场所,陈列其中的艺术品是体现兼容并蓄、海纳百川的重要文化载体,为此,上海世博会事物协调局将举办“中国2010年上海世博会‘中国馆·贵宾厅’艺术品方案征集”活动。某地美术馆从馆藏的中国画、书法、油画、陶艺作品中各选一件代表作参与应征,假设代表作中中国画、书法、油画入选“中国馆·贵宾厅”的概率均为,陶艺入选“中国馆·贵宾厅”的概率为
。
(1)求该地美术馆选送的四件代表作中恰有一件作品入选“中国馆·贵宾厅”的概率;
(2)求该地美术馆选送的四件代表作中至多有两件作品入选“中国馆·贵宾厅”的概率.
(本小题满分12分)
如图,在六面体ABC-DEFG中,平面∥平面
,
⊥平面
,
,
,
∥
.且
,
.
(1)求证:∥平面
;
(2)求二面角的余弦值.
(本小题满分10分)在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且a
=2csinA
(Ⅰ)确定角C的大小:
(Ⅱ)若c=,且△ABC的面积为
,求a+b的值。
已知等比数列的首项为
,公比为
(
为正整数),且满足
是
与
的等差中项;数列
满足
(
).
(1)求数列的通项公式;
(2)试确定的值,使得数列
为等差数列;
(3)当为等差数列时,对任意正整数
,在
与
之间插入2共
个,得到一个新数列
.设
是数列
的前
项和,试求满足
的所有正整数
的值。
在直角坐标系xOy中,椭圆C1:的左、右焦点分别为F1、F2,其中右焦点F2也是拋物线C2:y2 = 4x的焦点,点M为C1与C2在第一象限的交点,且|MF2| =
.
(1)求椭圆C1的方程;
(2)设,是否存在斜率为k (k≠0)的直线l与椭圆C1交于A、B两点,且|AE| = |BE|?若存在,求k的取值范围;若不存在,请说明理由.