、如图,是
的高,
是
外接圆的直径,圆半径为
,
,
求的值。
甲、乙、丙三人进行乒乓球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为,各局比赛的结果相互独立,第1局甲当裁判.
(1)求第4局甲当裁判的概率;
(2)用X表示前4局中乙当裁判的次数,求X的分布列和数学期望.
如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.
(1)求直线B1C1与平面A1BC1所成角的正弦值;
(2)在线段BC1上确定一点D,使得AD⊥A1B,并求的值.
已知数列{an}满足a1>0,an+1=2-|an|,n∈N*.
(1)若a1,a2,a3成等比数列,求a1的值;
(2)是否存在a1,使数列{an}为等差数列?若存在,求出所有这样的a1;若不存在,说明理由.
在锐角△ABC中,角A,B,C的对边分别为a,b,c.已知sin(A-B)=cosC.
(1)若a=3,b=
,求c;
(2)求的取值范围.
已知函数,
,其中
的函数图象在点
处的切线平行于
轴.
(1)确定与
的关系;(2)若
,试讨论函数
的单调性;
(3)设斜率为的直线与函数
的图象交于两点
(
)证明:
.