已知{an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16。
(1)求数列{an}的通项公式;
(2)若数列{an}和数列{bn}满足等式:an=+
+
+……+
,(n
N+),
求数列{bn}的前n项和Sn。
在一条笔直的工艺流水线上有三个工作台,将工艺流水线用如图所示的数轴表示,各工作台的坐标分别为,每个工作台上有若干名工人.现要在
与
之间修建一个零件供应站,使得各工作台上的所有工人到供应站的距离之和最短.
(1)若每个工作台上只有一名工人,试确定供应站的位置;
(2)设三个工作台从左到右的人数依次为2,1,3,试确定供应站的位置,并求所有工人到供应站的距离之和的最小值.
奇函数的定义域为
,其中
为指数函数且过点(2,9).
(1)求函数的解析式;
(2)若对任意的,不等式
恒成立,求实数
的取值范围.
已知,其中
.
(1)求证:与
互相垂
直;
(2)若与
的长度相等,求
.
已知函数(
为常数).
(1)求函数的单调增区间;
(2)若函数的图像向左平移
个单位后,得到函数
的图像关于
轴对称,求实数
的最小值.
已知点在由不等式组
确定的平面区域内,
为坐标原点,
,试求
的最大值.