已知二次函数的导函数的图像与直线
平行,且
在
处取得极小值
.设
.
(1)若曲线上的点
到点
的距离的最小值为
,求
的值;
(2)如何取值时,函数
存在零点,并求出零点.
定义:设分别为曲线
和
上的点,把
两点距离的最小值称为曲线
到
的距离.
(1)求曲线到直线
的距离;
(2)已知曲线到直线
的距离为
,求实数
的值;
(3)求圆到曲线
的距离.
设正四棱锥的侧面积为
,若
.
(1)求四棱锥的体积;
(2)求直线与平面
所成角的大小.
已知函数.
(1)求的单调区间;
(2)当时,判断
和
的大小,并说明理由;
(3)求证:当时,关于
的方程:
在区间
上总有两个不同的解.
已知椭圆的中心在原点,焦点在
轴上.若椭圆上的点
到焦点
、
的距离之和等于4.
(1)写出椭圆的方程和焦点坐标.
(2)过点的直线与椭圆交于两点
、
,当
的面积取得最大值时,求直线
的方程.