直四棱柱的底面
是菱形,
,其侧面展开图是边长为
的正方形.
、
分别是侧棱
、
上的动点,
.
(Ⅰ)证明:;
(Ⅱ)在棱
上,且
,若
∥平面
,求
.
已知点)都在函数
的图象上.
(1)若数列是等差数列,求证数列
为等比数列;
(2)若数列的前
项和为
=
,过点
的直线与两坐标轴所围成三角形面积为
,求使
对
恒成立的实数
的取值范围.
已知函数,函数
的图像与函数
的图像关于直线
对称.
(1)求函数的解析式;
(2)若函数在区间
上的值域为
,
求实数的取值范围;
(3)设函数,试用列举法表示集合
.
已知等差数列中,公差
,其前
项和为
,且满足
,
.
(1)求数列的通项公式;
(2)设由(
)构成的新数列为
,求证:当且仅当
时,数列
是等差数列;
(3)对于(2)中的等差数列,设
(
),数列
的前
项和为
,现有数列
,
(
),
是否存在整数,使
对一切
都成立?若存在,求出
的最小
值,若不存在,请说明理由.
某公园举办雕塑展览吸引着四方宾客.旅游人数与人均消费
(元)的关系如下:
(1)若游客客源充足,那么当天接待游客多少人时,公园的旅游收入最多?
(2)若公园每天运营成本为万元(不含工作人员的工资),还要上缴占旅游收入20%的税收,其余自负盈亏.目前公园的工作人员维持在40人.要使工作人员平均每人每天的工资不低于100元,并维持每天正常运营(不负债),每天的游客人数应控制在怎样的合理范围内?
(注:旅游收入=旅游人数×人均消费)
已知函数,
、
是
图像上两点.
(1)若,求证:
为定值;
(2)设,其中
且
,求
关于
的解析式;
(3)对(2)中的,设数列
满足
,当
时,
,问是否存在角
,使不等式
…
对一切
都成立?若存在,求出角
的取值范围;若不存在,请说明理由.