计算:;
综合与实践
问题情境:数学活动课上,王老师出示了一个问题:
如图1,在 中, 是 上一点, .求证 .
独立思考:(1)请解答王老师提出的问题.
实践探究:(2)在原有问题条件不变的情况下,王老师增加下面的条件,并提出新问题,请你解答.
“如图2,延长 至点 ,使 , 与 的延长线相交于点 ,点 分别在 上, .在图中找出与 相等的线段,并证明.”
问题解决:(3)数学活动小组同学对上述问题进行特殊化研究之后发现,当 时,若给出 中任意两边长,则图3中所有已经用字母标记的线段长均可求.该小组提出下面的问题,请你解答.
“如图3,在(2)的条件下,若 ,求 的长.”
如图,在 中, , ,点 在 上, ,连接 , ,点 是边 上一动点(点 不与点 重合),过点 作 的垂线,与 相交于点 ,连接 ,设 , 与 重叠部分的面积为 .
(1)求 的长;
(2)求 关于 的函数解析式,并直接写出自变量 的取值范围.
是 的直径, 是 上一点, ,垂足为 ,过点 作 的切线,与 的延长线相交于点 .
(1)如图1,求证 ;
(2)如图2,连接 ,若 的半径为 , ,求 的长.
如图,莲花山是大连著名的景点之一.游客可以从山底乘坐索道车到达山顶,索道车运行的速度是 米/秒.小明要测量莲花山山顶白塔的高度,他在索道 处测得白塔底部 的仰角约为 ,测得白塔顶部 的仰角约为 ,索道车从 处运行到 处所用时间约为 分钟.
(1)索道车从 处运行到 处的距离约为_____米;
(2)请你利用小明测量的数据,求白塔BC的高度.(结果取整数)
(参考数据: , )
密闭容器内有一定质量的二氧化碳,当容器的体积 (单位: )变化时,气体的密度 (单位: )随之变化.已知密度 与体积 是反比例函数关系,它的图象如图所示,当 时, .
(1)求密度 关于体积V的函数解析式;
(2)若 ,求二氧化碳密度 的变化范围.