(14分)设椭圆的左、右焦点分别为
,上顶点为
,在
轴负半轴上有一点
,满足
,且
.
(Ⅰ)求椭圆的离心率;
(Ⅱ)D是过三点的圆上的点,D到直线
的最大距离等于椭圆长轴的长,求椭圆
的方程;
(Ⅲ)在(Ⅱ)的条件下,过右焦点作斜率为
的直线
与椭圆
交于
两点,在
轴上是否存在点
使得以
为邻边的平行四边形是菱形,如果存在,求出
的取值范围,如果不存在,说明理由.
点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于
轴上方,
.求点P的坐标
已知抛物线的焦点为F,A是抛物线上横坐标为4、且位于
轴上方的点,A到抛物线准线的距离等于5.过A作AB垂直于
轴,垂足为B,OB的中点为M.
(1)求抛物线方程;
(2)过M作,垂足为N,求点N的坐标;
(3)以M为圆心,MB为半径作圆M,当是
轴上一动点时,讨论直线AK与圆M的位置关系.
双曲线(a>1,b>0)的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(-1,0)到直线l的距离之和s≥
c.求双曲线的离心率e的取值范围
已知抛物线C: y=-x2+6, 点P(2, 4)、A、B在抛物线上, 且直线PA、PB的倾斜角互补.
(Ⅰ)证明:直线AB的斜率为定值;
(Ⅱ)当直线AB在y轴上的截距为正数时, 求△PAB面积的最大值及此时直线AB的方程.
已知函数(
),且
.
(Ⅰ)试用含有的式子表示
,并求
的极值;
(Ⅱ)对于函数图象上的不同两点
,
,如果在函数图象上
存在点
(其中
),使得点
处的切线
,则称
存在“伴随切线”. 特别地,当
时,又称
存在“中值伴随切线”. 试问:在函数
的图象上是否存在两点
、
使得它存在“中值伴随切线”,若存在,求出
、
的坐标,若不存在,说明理由.