(本小题共13分)已知圆过两点
(1,-1),
(-1,1),且圆心
在
上.
(1)求圆的方程;
(2)设是直线
上的动点,
、
是圆
的两条切线,
、
为切点,求四边形
面积的最小值.
(本小题满分12分)在中,
,
,
.
(Ⅰ)求的值;(Ⅱ)求
的值.
(本小题满分14分)设数列的各项都是正数,且对任意
,都有
,记
为数列
的前
项和.(Ⅰ)求数列
的通项公式;(Ⅱ)若
(
为非零常数,
),问是否存在整数
,使得对任意
,都有
.
已知数列al,a2…,a30,其中al,a2…,a10是首项为1公差为1的等差数列;al0,a11…,a20是公差为d的等差数列;a20,a21…,a30是公差为d2的等差数列(d>0).(Ⅰ)若a20=40,求 d;(Ⅱ)试写出a30关于d的关系式,并求a30的取值范围;(Ⅲ)请依次类推,续写己知数列,把已知数列推广为无穷数列.再提出同(2)类似的问题,并进行研究,你能得到什么样的结论?
已知圆C:是否存在斜率为1的直线
,使
被圆C截得的弦长AB为直径的圆过原点,若存在求出直线的方程,若不存在说明理由.
某村计划建造一个室内面积为800m2的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1m宽的通道,沿前侧内墙保留3m宽的空地.当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?