游客
题文

(本小题满分12分)
已知焦点在轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点为圆心,1为半径的圆相切,又知C的一个焦点与A关于直线对称.
(1)求双曲线C的方程;
(2)设直线与双曲线C的左支交于A,B两点,另一直线经过M(-2,0)及AB的中点,求直线轴上的截距b的取值范围.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知三棱柱的三视图如图所示,其中正视图和侧视图均为矩形,俯视图中,
(I)在三棱柱中,求证:
(II)在三棱柱中,若是底边
的中点,求证:平面

(10分)已知圆C与圆相交,所得公共弦平行于已知直线,又圆C经过点A(-2,3),B(1,4),求圆C的方程。

(10分)△ABC中,已知三个顶点的坐标分别是A(,0),B(6,0),C(6,5),
(1)求AC边上的高线BH所在的直线方程;
(2)求的角平分线所在直线的方程。

(本小题满分12分)设递增等比数列{}的前n项和为,且=3,=13,数列{}满足,点P()在直线x-y+2=0上,n∈N﹡
(Ⅰ)求数列{},{}的通项公式
(Ⅱ)设,数列{}的前n项和,若>2a-1恒成立(n∈N﹡),求实数a的取值范围.

(本小题满分12分)
已知半圆x2+y2=3(y≥0),P为半圆上任一点,A(2,0)为定点,以PA为边作正三角形PAB,且点B与圆心分别在PA的两侧,求四边形POAB面积的最大值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号