(本小题满分12分)
已知焦点在轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点
为圆心,1为半径的圆相切,又知C的一个焦点与A关于直线
对称.
(1)求双曲线C的方程;
(2)设直线与双曲线C的左支交于A,B两点,另一直线
经过M(-2,0)及AB的中点,求直线
在
轴上的截距b的取值范围.
已知三棱柱的三视图如图所示,
其中正视图
和侧视图
均为矩形,俯视图
中,
。
(I)在三棱柱中,求证:
;
(II)在三棱柱中,若
是底边
的中点,求证:
平面
;
(10分)已知圆C与圆相交,所得公共弦平行于已知直线
,又圆C经过点A(-2,3),B(1,4),求圆C的方程。
(10分)△ABC中,已知三个顶点的坐标分别是A(,0),B(6,0),C(6,5),
(1)求AC边上的高线BH所在的直线方程;
(2)求的角平分线所在直线的方程。
(本小题满分12分)设递增等比数列{}的前n项和为
,且
=3,
=13,数列{
}满足
=
,点P(
,
)在直线x-y+2=0上,n∈N﹡
(Ⅰ)求数列{},{
}的通项公式
(Ⅱ)设=
,数列{
}的前n项和
,若
>2a-1恒成立(n∈N﹡),求实数a的取值范围.
(本小题满分12分)
已知半圆x2+y2=3(y≥0),P为半圆上任一点,A(2,0)为定点,以PA为边作正三角形PAB,且点B与圆心分别在PA的两侧,求四边形POAB面积的最大值.