游客
题文

(本题满分10分)选修4   -4 :坐标系与参数方程
将圆上各点的纵坐标压缩至原来的,所得曲线记作C;将直线3x-2y-8=0
绕原点逆时针旋转90°所得直线记作l
.(I)求直线l与曲线C的方程;
(II)求C上的点到直线l的最大距离.

科目 数学   题型 解答题   难度 较易
知识点: 参数方程
登录免费查看答案和解析
相关试题

已知甲、乙两煤矿每年的产量分别为200万吨和300万吨,需经过东车站和西车站两个车站运往外地,东车站每年最多能运280万吨煤,西车站每年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费价格分别为1元/吨和1.5元/吨,乙煤矿运往东车站和西车站的运费价格分别为0.8元/吨和1.6元/吨.要使总运费最少,煤矿应怎样编制调运方案?

已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x-y-5=0.AC边上的高BH所在直线为x-2y-5=0.
求:(1)顶点C的坐标;
(2)直线BC的方程.

如图,直角三角形ABC的顶点A的坐标为(-2,0),直角顶点B的坐标为(0,-2),顶点C在x轴上.
(1)求BC边所在直线的方程.
(2)圆M是△ABC的外接圆,求圆M的方程.

△ABC的两条高所在直线的方程为2x-3y+1=0和x+y=0,顶点A的坐标为(1,2),求BC边所在直线的方程.

如图,M、N、P分别是正方体ABCD-A1B1C1D1的棱AB、BC、DD1上的点.
(1)若=,求证:无论点P在D1D上如何移动,总有BP⊥MN;
(2)若D1P:PD=1∶2,且PB⊥平面B1MN,求二面角M-B1N-B的余弦值;
(3)棱DD1上是否总存在这样的点P,使得平面APC1⊥平面ACC1?证明你的结论.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号