(本小题满分16分)已知椭圆的离心率为,一条准线.(1)求椭圆的方程;(2)设O为坐标原点,是上的点,为椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于两点.①若,求圆的方程;②若是l上的动点,求证:点在定圆上,并求该定圆的方程.
已知定义在上的函数 (1)求的值; (2)若实数,求的最小值及取得最小值时对应的的值。
已知函数的周期为,图像的一个对称中心为,将函数图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得到的图像向右平移个单位长度后得到函数的图像. (1)求函数与的解析式; (2)若,是第一象限的角,且,求的值.
某货轮在A处看灯塔S在北偏东30°,它以每小时36海里的速度向正北方向航行,40分钟航行到B处,看灯塔S在北偏东75°,求这时货轮到灯塔S的距离.
已知 1)若,求的单调递增区间 2)当时,的最大值为4,求的值 3)在2)的条件下,求满足且的集合
已知锐角满足,,求.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号