游客
题文

(本小题12分)已知椭圆的离心率为为椭圆的右焦点,两点在椭圆上,且,定点
(1)若时,有,求椭圆的方程;
(2)在条件(1)所确定的椭圆下,当动直线斜率为k,且设时,试求关于S的函数表达式f(s)的最大值,以及此时两点所在的直线方程。

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

动圆经过定点,且与直线相切。
(1)求圆心的轨迹方程;
(2)直线过定点与曲线交于两点:
①若,求直线的方程;
②若点始终在以为直径的圆内,求的取值范围。

某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=,∠ADE=

(1) 该小组已经测得一组的值,tan=1.24,tan=1.20,请据此算出H的值;
(2) 该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使之差较大,可以提高测量精确度。若电视塔的实际高度为125m,试问d为多少时,最大?

如图,在直三棱柱中,的中点.

(1)求证:平行平面
(2)求二面角的余弦值;
(3)试问线段上是否存在点,使角?若存在,确定点位置,若不存在,说明理由.

设函数定义域为,且.
设点是函数图像上的任意一点,过点分别作直线轴的垂线,垂足分别为

(1)写出的单调递减区间(不必证明);
(2)问:是否为定值?若是,则求出该定值,若不是,则说明理由;
(3)设为坐标原点,求四边形面积的最小值.

定义数列,(例如时,)满足,且当)时,.令
(1)写出数列的所有可能的情况;
(2)设,求(用的代数式来表示);
(3)求的最大值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号